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Abstract: As a rhythmic neural activity, neural oscillation exists all over the nervous system, in structures as diverse as the cerebral 
cortex, hippocampus, subcortical nuclei and sense organs. This review firstly presents some evidence that synchronous neural oscilla-
tions in theta and gamma bands reveal much about the origin and nature of cognitive processes such as learning and memory. And 
then it introduces the novel analyzing algorithms of neural oscillations, which is a directionality index of neural information flow 
(NIF) as a measure of synaptic plasticity. An example of application used such an analyzing algorithms of neural oscillations has been 
provided. 
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与突触可塑性相关的神经振荡和信息流研究
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摘  要：作为一种有节律的神经活动，神经振荡现象发生在所有的神经系统中，例如大脑皮层、海马、皮层下神经核团以及

感觉器官。本综述首先给出了已有的研究结果，即基于theta和gamma频段的同步神经振荡揭示了认知过程的起源与本质，

如学习与记忆。然后介绍了关于神经振荡分析的新技术和算法，如表征神经元突触可塑性的神经信息流方向指数，并例举

了神经振荡分析的一个新方法以及其应用实例。
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Invited Review

Neural oscillation is rhythmic or repetitive neural activ-
ity and appears throughout the nervous system, in 
structures as diverse as the cerebral cortex, hippocam-
pus, subcortical nuclei and sense organs[1]. They are 
present in the intracellular voltages, individual spike 
trains and/or in local field potentials generated by pop-
ulations of synchronized cells. Neural tissue can pro-
duce oscillatory activity in many ways, driven either by 
mechanisms localized within individual neurons or by 
feedback interactions among populations of neurons. In 
individual neurons, oscillations can appear either as 
subthreshold rhythms of membrane potential rise and 

fall, or as rhythmic increases and decreases in action 
potential activity, which then produce rhythmic activa-
tion of synapses in target neurons. At the level of neural 
population, synchronized oscillations of large numbers 
of neurons can give rise to macroscopic oscillatory 
electric fields, which can be observed in the electroen-
cephalogram (EEG). 

It is alpha rhythm, ranged from 8 to 12 Hz, which 
was described as the first human EEG pattern. From 
scalp recordings, researchers identified various other 
oscillatory patterns that were particularly obvious dur-
ing rest and sleep[2]. Previous investigation reported 
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that even single neurons were endowed with complex 
dynamics, including their intrinsic abilities to resonate 
and oscillate at multiple frequencies, which suggested 
that precise timing of their activity within neuronal net-
works could present information[3]. The synchronous 
activity of oscillating neural networks has been consid-
ered to be the critical “middle ground” linking single-
neuron activity to behavior[4–6]. The research area relat-
ed to neuronal oscillations has created an interdisciplinary 

platform that cuts across several disciplines, such as psy-
chophysics, cognitive psychology, neuroscience, biophys-
ics, computational modeling, physics, mathematics, and 
philosophy[7]. 

1  Neural oscillations 

It shows that neuronal networks in the mammalian 
forebrain demonstrate several oscillatory bands cover-

Fig. 1. Oscillatory class in the rat cortex. Note the linear progression of the frequency classes on the scale of natural logarithm. For 
each band, the range of frequencies is shown, together with its commonly used term. Adopted with permission from Buzsaki et al. [2]. 

Fig. 2. Power spectrum of EEG from the right temporal lobe in 
a sleeping subject. Note the near-linear decrease of log power 
with increasing log frequency from 0.5 to 100 Hz. Adopted with 
permission from Buzsaki et al. [2]. 

ing frequencies from approximately 0.025 Hz to 600 
Hz (Fig. 1). The mean frequencies of oscillator catego-
ries form a linear progression on a natural logarithmic 
scale with constant ratio between neighboring frequen-
cies, leading to the separation of frequency bands[8]. 
Neighboring frequency bands within the same neuronal 
network are typically associated with different brain 
states and compete with each other. On the other hand, 
several rhythms can temporally coexist in the same or 
different structures and interact with each other[2, 9]. 
Figure 2 shows that the power spectrum of EEG or lo-
cal field potential (LFP) is inversely proportional to 
frequency (f) in the mammalian cortex[2]. The 1/f power 
relationship means that perturbations occurring at slow 
frequencies can bring out a cascade of energy dissipa-
tion at higher frequencies. Furthermore, it implies that 
widespread slow oscillations modulate faster local 
events[10]. The properties of neural oscillators are the 
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results of the physical architectures of neural networks 
and the restricted speed of neural communication be-
cause of axon conduction and synaptic delay[2]. The pe-
riod of oscillation is constrained by the size of the neu-
ral pool engaged in a given cycle since most neural 
connections are local. Large networks are recruited 
during slow oscillations, while higher frequency oscil-
lations are restricted to a small neuronal space[9]. These 
relations between anatomical architecture oscillatory 
patterns let brain operations to be performed simultane-
ously at multiple temporal and spatial scales[2].

2  Theta and gamma oscillations govern cog-
nitive processes of learning and memory

As oscillatory responses to a cognitive event, evoked or 
event-related oscillations are usually classified accord-
ing to the ‘natural frequencies’ of the brain (delta 0.5–3 
Hz, theta 3–8 Hz, alpha 8–13 Hz and gamma 30–80 
Hz). As will become clear below, this approach is well 
suited for comparative analysis of findings at the level 
of single neurons, field potentials, EEG or magnetoen-
cephalogram (MEG)[11].  

It is important to note that the most general dynamics 
in the brain are governed by the brain’s natural oscilla-
tions. The neural oscillations provide basic links to 
brain functions, especially for communication and as-
sociated functions. Because learning and memory pro-
cesses are most closely related to theta and gamma 
rhythms, recently, many neuroscientists have been as-
sociating the theta and gamma bands with the expres-
sion ‘oscillations’ and these two frequencies bands are 
treated extensively. It is argued that selectively distrib-
uted theta and gamma oscillatory systems act as reso-
nant communication networks through large popula-
tions of neurons. Thus, oscillatory processes might play 
a major role in functional communication in the brain 
in relation to learning and memory[11]. 
2.1  Theta oscillations
Theta power tends to increase in memory tasks, espe-
cially during encoding. These complementary efforts 
were considered to display different cognitive opera-
tions. Although theta oscillations have been found in 
lower animals such as rats, they are seldom seen direct-
ly in EEG recordings from humans and it has been dif-
ficult to understand what the classically-observed in-
creases in theta power meant[12]. However, intracranial 
EEG (iEEG) recordings obtained from epileptic pa-
tients have recently uncovered significant theta oscilla-

tions from many areas of the human brain[13, 14]. In the 
experiments, periods with apparent theta oscillations 
were more frequent when patients were navigating 
through a virtual maze by memory alone, relative to 
when they were guided through the maze by arrow 
cues. The theta periods were longer the longer the 
maze. Theta did not covary, however, with the time 
taken to make decisions at choice points; instead gam-
ma oscillations were more prevalent the longer the de-
cision time. Thus, theta oscillations are more closely 
linked to encoding and retrieval in memory than they 
are to other cognitive processes[15].  

The theta rhythm is a LFP oscillation in the 4–10 Hz 
frequency range that has long been recognized as the 
defining electrophysiological signature of hippocampal 
activity[16]. It is well known that theta oscillations are 
able to modulate neural activity not only within the 
hippocampus, but also in subcortical, limbic, and corti-
cal structures. Therefore, theta oscillations play a ubiq-
uitous property of neural networks, and phase locking 
to theta oscillations appears to be an important organiz-
ing principle of neural activity during awake behavior 
and rapid eye movement (REM) sleep[17]. 

Theta oscillations represent the “on-line” state of the 
hippocampus. The rhythm is believed to be critical for 
temporal coding/decoding of active neuronal ensembles 
and the modification of synaptic weights[16]. Theta os-
cillation is the most regular in frequency and largest 
amplitude in the stratum lacunosum-moleculare of the 
hippocampal CA1 region. Both the amplitude and 
phase of theta waves change as a function of depth, 
whereas in the same layers they are robustly similar 
along the long axis of the hippocampus. In addition to 
the hippocampus, theta oscillations and phase-locked 
discharge of neurons to theta waves have been ob-
served in several other structures, which are thus the 
main current generators of the extracellularly recorded 
theta field. However, none of these cortical structures 
are capable of generating theta activity on their own. 
Several subcortical nuclei have been postulated to be 
critically involved in the rhythm generation of theta. 
Afferents from these nuclei may release neurotransmit-
ters that may allow for the emergence of network oscil-
lations in the hippocampus and associated structures or 
may provide a coherent, theta frequency output[16]. Be-
cause lesion or inactivation of medial septum-diagonal 
band of Broca (MS-DBB) neurons abolishes theta 
waves in all cortical targets, it has been regarded as the 
ultimate rhythm generator of theta[18]. The minimum 
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conditions necessary for the generation of oscillating 
extracellular currents in the theta frequency band are 
the proper connections between the hippocampus and 
the MS-DBB. 

The MS-DBB has been assumed to be the rhythm 
generator which supplies phasic modulation to the hip-
pocampus in the first theta model. Figure 3 shows sub-
sequent theta models with new components. It is as-
sumed that the extracellular field is generated by the 
summed activity of IPSPs and EPSPs on the somata 
and dendrites of principle cells, respectively. These 
models used a single canonical CA1 pyramidal cell 
with passive membrane properties. It has been sup-
posed that all pyramidal neurons obtain coherent excit-
atory (from perforant path) and inhibitory (from septum 
to feed-forward inhibitory neuron) inputs. The interac-
tion between these two current generators (dipoles) is 
assumed to be responsible for the unique amplitude/
phase versus depth profiles of hippocampal theta oscil-
lation.

It is an important issue about hippocampal plasticity 
during theta oscillations. Several observations imply 
that theta oscillations may be involved in synaptic plas-
ticity. Many studies either in vitro or in vivo have re-
ported that induction of long-term potentiation (LTP) is 
optimal when the time interval between stimuli is ap-
proximately 200 ms[19]. Rhythmic stimulation at theta 
frequency is not needed though and two high-frequency 
bursts are sufficient. Why is potentiation so efficient 

during theta? Various factors that act in concert during 
the theta cycle may be responsible. When theta-like os-
cillation is induced in the slice by carbachol, part of the 
effect may be explained by the drug’s blocking effect 
of GABAA receptor. Thus, theta oscillation may pro-
vide a mechanism for bringing together in time affer-
ent-induced depolarization of pyramidal cell dendrites 
and dendritic invasion of fast spikes, the key elements 
for the induction of synaptic plasticity. During theta os-
cillation, for example, repeated pairing of distal den-
dritic depolarization by the entorhinal input and the tri-
synaptically activated CA3 recurrent/Schaffer collaterals 
to CA3 and CA1 pyramidal cells can result in synaptic 
modification of the intra-hippocampal associational 
pathways. As a result, these modified pathways will 
give rise to endogenous population patterns in the ab-
sence of the entorhinal inputs during non-theta activity. 
Reactivation of the same synapses can further strength-
en their efficacy. The synaptic modification, brought 
about by the two-step process, in turn, will allow mem-
ory retrieval. The significance of theta oscillations is 
that they reliably correlate with a variety of behaviors. 
The theta versus non-theta dichotomy objectively 
groups behaviors into preparatory versus consummatory 
classes.
2.2  Gamma oscillations
Synchronous gamma activity has been observed in nu-
merous structures. In vivo, in the hippocampus, this os-
cillation appears to be controlled by the dentate gyrus 

Fig. 3. “Classic” model of extracellular theta current generation. Adopted with permission from Buzsaki (2002) [16].
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and to project CA3 and CA1[20]. Gamma oscillations 
are considered to momentarily connect distributed neu-
ron assemblies that are processing related informa-
tion[21, 22], a function that is almost certainly essential 
for network processes such as memory[23]. This ‘bind-
ing’ mechanism requires that spatially distributed neu-
rons fire together with millisecond range precision[6]. 
Evoked or spontaneous gamma-band activity of LFPs 
is involved in information processing in many brain re-
gions, including the hippocampus and cortex[24]. 

Neural oscillations in the gamma band play an im-
portant role in learning and memory processing. Intrac-
ranial EEG recordings, obtained from epileptic patients 
memorizing words, reveal that during successful mem-
ory formation the rhinal cortex is first coupled to the 
hippocampus via 40 Hz gamma oscillations and then 
decoupled from it[25]. Gamma oscillations have been 
implied to be a common mechanism for accomplishing 
such transient coupling of functional brain areas based 
on evidence of gamma band coherence across the brain 
during associative learning[15]. Furthermore, during suc-
cessful recollection, as opposed to merely experiencing 
a feeling of familiarity, there is greater gamma-band 
functional connectivity between frontal and parietal 
cortex along with more spectral power in both theta 
and gamma bands[26]. The phenomenon that gamma-
band activity was observed to be modulated at the theta 
rate suggested that interactions of gamma and theta ac-
tivity might be involved in memory function[15].

Among the models of memory processes it was sug-
gested linking neural oscillations to memory processes. 
Memories were stored in groups of pyramidal neurons 
firing in synchrony in the model. The synchronous fir-
ing leans to dissipate with time and requires being re-
freshed periodically. The individual memories were re-
freshed at the gamma frequency and the overall refresh 
cycle was replicated at the theta frequency[15]. The 
model needs that gamma oscillation, which were col-
lected from human cortex, modulated at the theta fre-
quency band in the human brain. 

Several studies indicated that there was a relationship 
between cognitive function and the gamma-band power 
of the LFP[27]. In the previous investigation, the effects 
of synaptic plasticity on the gamma-band power of the 
LFP were determined [28–30]. Furthermore, gamma-band 
power elevation was observed in LTP but not in long-
term depression in posterior dorsal hippocampus CA1 
(pdCA1)-prefrontal cortex (PFC)[27]. The sustained ele-
vation of gamma-band activity appears to be related to 

the working memory functions because memory repre-
sentation is required to sustain neural activity patterns 
in the PFC. Gamma-band frequencies in the LFPs of 
many regions of the brain are involved in highly inte-
grated functions, including information binding, atten-
tion and working memory. It has been suggested that 
different sets of neurons in a network (neuron assem-
blies), which correspond to diverse information from 
each group, fire in different gamma cycles or at differ-
ent gamma frequencies[31]. The strength of synaptic 
connectivity may have some correlation with the spon-
taneous gamma-band powers[27]. Synaptic plasticity 
such as LTP, which is believed to be a neural basis for 
memory functions, appears to enable neuron assemblies 
to be dynamic. Taken together, the synaptic plasticity 
may be reflected in gamma-band frequencies. 

3  Detecting and measuring neural oscillations

Neural oscillators belong to limited-cycle and weakly 
chaotic oscillators and share features of both harmonic 
and relaxation oscillators[32]. The macroscopic appear-
ance of several brain rhythms, such as the theta and 
gamma oscillations, resembles the sinusoid pattern of 
harmonic oscillators. A major advantage of harmonic 
oscillators is that their long-term behavior can be pre-
dicted from short-term observations of their phase an-
gle[32]. Nevertheless, groups of harmonic oscillators 
poorly synchronize their phases. On the other hand, the 
macroscopic oscillations are generated by neurons, 
whose spiking patterns share characteristic with relax-
ation oscillators. Relaxation oscillators synchronize ro-
bustly and with great stability[33].

The strength of neural oscillations can be assessed in  
both time and frequency domains. In the time domain, 
oscillations in spike trains are measured by means of 
periodic peaks in the autocorrelogram; in the frequency 
domain, power spectral analysis is applied to character-
ize their frequency features. However, the autocorrelo-
grams are subject to confounds caused by the refractory 
period and spectral peaks often fail to reveal weak 
rhythms[1]. Another approach, named oscillation score, 
reduces these problems[34]. It combines analyses in the 
time and frequency domains to show the strength of os-
cillations as one dimensionless number. Also, oscilla-
tions shared by local groups of cells can be detected in 
population responses, such as the LFP or in patterns of 
synaptic input. 

Furthermore, traditional cross-correlation techniques 
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only provide symmetric estimates of the strength of in-
teraction. Importantly, they lack significant information 
about causal relationships in interactions, that is, direc-
tionality and asymmetry of coupling. Such information 
is crucial in unraveling the structure of a system from 
observation of signals from its several components. Re-
cently, several algorithms were proposed to deal with 
the issue of causality. Approaches based on the concept 
of generalized chaos synchronization were developed[35] 
and were applied to experimental neurophysiologic 
data. These methods are based on mutual nonlinear 
predictabilities or mutual nearest neighbors in the re-
constructed phase space of the system. They are similar 
to the concept of Granger causality[36] where statistical 
tests are used to inquire whether the predictability of 
one time series can be improved by the knowledge of a 
second signal.

In many cases, particularly in neuroscience, interact-
ing physiological subsystems can be represented by 
weakly coupled nonlinear oscillators, so that informa-
tion about the instantaneous phases of oscillators is suf-
ficient to describe their dynamics [37]. To determine di-
rectionality of weak coupling between two neural 
subsystems, two approaches, which quantify the direc-
tion of coupling between the phases of two oscillatory 
(sub-) systems, are introduced in this review. One of 
them, named evolution map approach (EMA), was pro-
posed by Rosenblum and Pikovsky[38], and then im-
proved by Smirnov and Andrzejak[39]. Another algo-
rithm, which was developed in knowledge of information-
theoretic measures, is called conditional mutual information 
(IM).

It is well known that the phase dynamics technique is 
a particularly useful approach to investigating physio-
logical oscillations, because it can deal with their time-
variable nature, and lets us to study their amplitudes 
and phases separately. It can reveal the underlying rules 
that contribute to the deterministic part of the variabili-
ty, thus yielding evidence about its physiological ori-
gins. It also illuminates the question of whether causal 
relationships exist between the oscillations, and wheth-
er some or all of the time variability results from a uni-
directional interaction[40].

4  EMA

The directionality index[38] is a measure for directional 
influences based on hypothesis of weak coupling in 
self-sustained systems. Main features of EMA are ro-

bustness against noise and small influence of frequency 
mismatch[38, 41]. This technique has been successfully 
applied not only to model systems[42], but also to EEG 
data from epileptic patients[39, 43] and Alzheimer’s pa-
tients[44], MEG motor control experiment[45], experi-
mental time series data from electroreceptors of paddle-
fish[37], and intracranial EEG between human neocortex 
and hippocampus[46].

The most important idea of this approach is to model 
the phase dynamics of two systems

                                                                                     
and fit the parameters in f1,2 using aligned Fourier series

The mutual influence of the systems was quantified by 
the coefficients

Then we can calculate their coupling direction and de-
note the direction index as

where coefficients c2 and c1 describe cross-dependence 
in X1→X2 and X2→X1 respectively, obtained by fitting it 
in the least mean square sense. As a result, ( )2,1d is nor-
malized to the range between [−1, 1], which means 
system 1 predominantly drives system 2 in the case of 
a positive directionality index and vice versa[46]. In ad-
dition, coefficients c2 and c1 can be used to analyze uni-
directional information transfer, which describe cross-
dependence in X1→X2 and X2→X1 respectively, 
obtained by fitting it in the least mean square sense. We 

normalized 21，c with 
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，  to limit it in [0, 1]. 
To extract instantaneous phase, Hilbert transform is ap-
plied, which obtains the phase approximately from the 
original broadband signals in a frequency adaptive 
manner. 

5  IM - A directionality index based on condi-
tional mutual information

It is proposed and applied to the instantaneous phases 
of weakly coupled oscillators[47, 48], with which the cou-
pling direction between oscillators can be identified. 
Main features of IM are suitability of aperiodicity ex-
hibited in EEG signals and robustness against noise and 
its advantage is that it can reveal and quantify the pos-
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sible asymmetry in the couplings. This technique has 
been successfully applied not only to model sys-
tems[48–50], but also to EEG data from epileptic pa-
tients[51] and rats in different levels of anaesthesia[40], as  

well as to the amplitude and frequency of cardiac oscil-
lations[52]. However, the IM estimator is quite sensitive 
to the length of data sequence, while the bias and vari-
ance of IM reduces with the increasing length of data 
sequence. The simulation results exhibit that the IM 
can reliably detect the coupling direction between two 
chaotic oscillators if the length of data sequence is 
larger than 104. 

Generally, the mutual information ( );I X Y  of two 
random variables X  and Y  is given by 

Given the variable Z , the conditional mutual informa-
tion is defined as 

Supposing two processes { }1X  and { }2X , their 
instantaneous phases         and          [38, 41] can be esti-
mated by application of the discrete Hilbert trans-
form[53], which obtains the phase approximately from 
the original broadband signals in a frequency adaptive 
manner. Next, we can estimate the “net” information 
about the             of the process { }1X  contained in 
process { }2X (or the                of the process { }2X  co-
ntained in process{ }1X ) using                     (or      		
     ), to infer the coupling directionality [48]. To establish 
possible causality relations, we consider phase incre-
ments

Then the conditional mutual information is                                                      	
	           . Now, the directionality index is calcu-
lated by 

where the measure ( )1 2i →  and ( )2 1i →  are de-
fined using the conditional mutual information              	
	                          	 and                                   . 

( )1,2D   should be positive if system 1 drives system 2, 
and negative for the opposite case. ( )1,2 0D =  means 
that the interactions between the two systems are sym-
metrical.

6  Directionality index of neural information 
flow (NIF) in delta and theta bands as a measure 

of synaptic plasticity

Synaptic plasticity is well understood to comprise the 
cellular basis for memory formation and cognition. 
Growing attention has recently been focused on LTP of 
PFC, because of its close relationship with cognitive 
function, which can be found altered in depression[54]. A 
recent study demonstrated that synaptic plasticity of 
laterodorsal thalamic nucleus (LD) to PFC pathway 
was impaired in an animal model of psychiatric diseas-
es[55]. It is well known that NIF is constrained by the 
synaptic linkage. Obviously, it is not enough to reveal 
how transmit information passed through nerve path-
way by handling structural changes alone. Recently, 
transmissions of neural signals have been measured by 
various algorithms[56], by which the directionality of 
NIF can be determined[57–59]. Because interacting neural 
subsystems can be represented by weakly coupled non-
linear oscillators, information about the instantaneous 
phases of oscillators is sufficient to describe their dy-
namics[37]. To determine directionality of weak coupling 
between two neural subsystems, a method named EMA 
was proposed by Rosenblum and Pikovsky[38] and then 
improved by Smirnov and Andrzejak[39]. Recently, 
Zheng et al. introduced EMA to measure the direction 
of information flow between the medial prefrontal cor-
tex (mPFC) and thalamus and tried to address an issue 
as to whether the directionality of NIF can be used to 
index the measurement of synaptic plasticity in the 
chronic unpredictable stress (CUS) animal model[60]. 
This was done by inducing LTP of the thalamocortical 
pathway after recording LFP at the same two locations 
in Wistar rats of both CUS and control groups. 

The LFP were filtered by FIR filter into delta and the-
ta bands. The phase series by means of Hilbert trans-
form was extracted and the directional index d  and the 
unidirectional influence 0

2c  between two filtered time 
series were calculated. EMA analysis of thalamus-PFC 
pathway in rats between both states was showed (Fig. 
4A). There was significant difference of the directional 
index d between the normal and CUS rats (Fig. 4A1). 
Furthermore, the group values of the unidirectional in-
fluence 0

2c , indicating the unidirectional coupling thala-
mus-PFC were presented in Fig. 4A2, and it was found 
that the unidirectional influence of NIF in normal 
Wistar rats was significantly higher than that in stressed 
rats[60]. Data representing the time course of fEPSP 
(field excitatory postsynaptic plasticity) slopes normal-
ized to the 30 min baseline period was exhibited in Fig. 
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4B1. The fEPSP slopes increased immediately after the 
high-frequency stimulation and stabilized to a level 
above the baseline period. For further statistical analy-
sis, Student’s t-test of mean fEPSP slope of the 6 time 
points was applied in the two groups, which presented 
that the mean fEPSP slope was statistically smaller in 
CUS animals compared with that in normal Wistar rats 
(Fig. 4B2).

7  Neural oscillations and synaptic plasticity

Although indirect, several observations suggest the 
possible involvement of theta oscillations in synaptic 
plasticity. A number of in vitro and in vivo studies have 
reported that induction of LTP is optimal when the time 
interval between stimuli is approximately 200 ms. 
Studies suggest a relationship between neural oscillato-
ry bands, such as theta and gamma, and behavioral 
states. However, few studies have examined the synap-

tic plasticity and neural activity of LFPs in various fre-
quency bands. An issue has been raised as to whether 
the directionality index of NIF, based on different oscil-
latory bands, could be used to index the measurement 
of synaptic plasticity. EMA analysis showed that the 
coupling direction index was significantly diverted in 
pathological condition compared to that in normal 
state[60], suggested that the pattern of information flow 
in delta and theta bands was drastically affected in CUS 
animal model. Moreover, the nonnegative index c2 
showed that the strength of thalamus driving frontal 
cortex was considerably decreased in the rats of CUS 
model[60], suggested that the cognitive dysfunction 
could be in part caused by the reduction of information 
transfer along the thalamocortical pathway. Meanwhile, 
the LTP experiments showed that chronic stress de-
creased mPFC synaptic plasticity, which was undoubt-
edly in accordance with the LFP findings. Together 
these results showed that using EMA method, direc-

Fig. 4. The effects of chronic stress on directional coupling analysis of thalamus and cortex and fEPSP slopes of LTP . A1: Coupling 
direction index d between thalamus and cortex in both control and stressed groups. A2: Normalized unidirectional influence index 0

2c , indi-
cating thalamus to cortex in both control and stressed groups. B1: Time coursing changes in PSP slopes. B2: Mean fEPSP slopes of 6 
time points in two groups. ** P < 0.01 and ***P < 0.001 vs control group. Adopted from Zheng et al. (2011)[60].
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tionality index of NIF may be as a measure of synaptic 
plasticity. However, phase-based approaches are still at 
an early stage of development. It remains an open ques-
tion if phase-based directionality methods are best fit-
ted to identify the neuronal mechanisms underlying 
functional interactions between brain areas.
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